
1

Introduction to Rice HPCToolkit
on Early Access BlueGene/Q

Mark W. Krentel
Department of Computer Science

Rice University
krentel@rice.edu

http://hpctoolkit.org

Argonne Early Science Workshop May 1, 2012
Saturday, April 28, 2012

mailto:krentel@rice.edu
mailto:krentel@rice.edu

HPCToolkit Basic Features
• Run application natively, every 100-1,000 times per second,

interrupt program and record snapshot of call stack.

• Combine sampling data with binary analysis of program
structure: loops, inline functions, etc.

• Present top-down, bottom-up and flat views of calling context
tree (CCT) and time-sequence trace view. Costs are displayed
per source line in the context of their call path.

• Can sample on Wallclock (itimer) and Hardware Performance
Counter Events (PAPI preset and native events).

2
Saturday, April 28, 2012

Advantages of Sampling
• Run application natively at full optimization.

• Analyze program binary, no changes to source code.

• Low overhead, typically < 5%, overhead is proportional to
sampling rate, not number of function calls.

3
Saturday, April 28, 2012

HPCToolkit Advanced Features
• Finely-tuned unwinder to handle multi-lingual, fully-optimized

code, no frame pointers, broken return pointers, stack trolling,
etc.

• Derived metrics -- compute flops per cycle, or flops per
memory reads, etc. and attribute to lines in source code.

• Compute strong and weak scaling loss, for example:
strong: 8 * (time at 8K cores) - (time at 1K cores)
weak: (time at 8K cores and 8x size) - (time at 1K cores)

• Blame shifting -- when thread is idle or waiting on a lock,
blame the working threads or holder of lock.

• Load imbalance -- display distribution and variance in metrics
across cores and threads.

4
Saturday, April 28, 2012

Getting Started with HPCToolkit
• Add to PATH:

/home/projects/hpc/pkgs/hpctoolkit/bin

• Compile source files natively with full optimization,
add -g to CFLAGS (for source lines).

• Use hpclink to link application with hpctoolkit code.
hpclink mpicc -o myprog file.o ... -llib ...

• Launch program with HPCRUN environ variables.
HPCRUN_EVENT_LIST=‘PAPI_TOT_CYC@15000000,
 PAPI_FP_OPS@1000000’
HPCRUN_TRACE=1 (for tracing)
qsub -A <project> -t <time> -n <nodes> ... \
 --env HPCRUN_EVENT_LIST=’...’:HPCRUN_TRACE=1 \
 myprog arg ...

5
Saturday, April 28, 2012

Getting Started, cont’d.
• Use hpcstruct to analyze program binary.

hpcstruct myprog
=> myprog.hpcstruct

• Use hpcprof or hpcprof-mpi to combine .hpcstruct file with
measurements directory (use ‘+’ for subdirectories).
hpcprof -S myprog.hpcstruct \
 -I /path/to/myprog/source/tree/+ \
 hpctoolkit-myprog-measurements-jobid
==> hpctoolkit-myprog-database-jobid

• Use hpcviewer and hpctraceview (if enabled tracing) to view
results.
hpcviewer hpctoolkit-myprog-database-jobid
hpctraceviewer hpctoolkit-myprog-database-jobid

6
Saturday, April 28, 2012

Where to find HPCToolkit
• Home page:

http://hpctoolkit.org/

• On veas:
/home/projects/hpc/pkgs/hpctoolkit/bin

• Source code available for anonymous svn checkout at the
SciDAC Outreach Center (hpctoolkit project).
https://outreach.scidac.gov/projects/hpctoolkit/

• Prebuilt versions of the viewer and traceviewer also available
at the SciDAC Outreach Center (hpcviewer project).
https://outreach.scidac.gov/projects/hpcviewer/

7
Saturday, April 28, 2012

https://outreach.scidac.gov
https://outreach.scidac.gov
https://outreach.scidac.gov
https://outreach.scidac.gov

HPCToolkit Capabilities at a Glance

Attribute Costs to Code

Analyze Behavior
over Time

Assess Imbalance
and Variability

Associate Costs with DataShift Blame from
Symptoms to Causes

Pinpoint & Quantify
Scaling Bottlenecks

hpctoolkit.org
Saturday, April 28, 2012

http://hpctoolkit.org
http://hpctoolkit.org

Measure and attribute costs in context
 sample timer or hardware counter overflows
 gather calling context using stack unwinding

Call Path Profiling

9

Call path sample

instruction pointer

return address

return address

return address

Overhead proportional to sampling frequency...
...not call frequency

Calling context tree

Saturday, April 28, 2012

• Profiling compresses out the temporal dimension
—temporal patterns, e.g. serialization, are invisible in profiles

• What can we do? Trace call path samples
—sketch:

– N times per second, take a call path sample of each thread
– organize the samples for each thread along a time line
– view how the execution evolves left to right
– what do we view?

 assign each procedure a color; view a depth slice of an execution

10

Understanding Temporal Behavior

Time

Processes

Call
stack

Saturday, April 28, 2012

AMG2006: 8PE x 8 OMP Threads

11

OpenMP loop in hypre_BoomerAMGRelax using
static scheduling has load imbalance; threads
idle for a significant fraction of their time

Saturday, April 28, 2012

Code-centric view: hypre_BoomerAMGRelax

12

Note: The highlighted OpenMP loop in
hypre_BoomerAMGRelax accounts for
only 4.6% of the execution time for this

benchmark run. In real runs, solves
using this loop are a dominant cost

across all instances of this OpenMP
loop in hypre_BoomerAMGRelax

19.7% of time in this loop is spent
idle idle w.r.t. total effort in this loop

Saturday, April 28, 2012

Serial Code in AMG2006 8 PE, 8 Threads

13

7 worker threads are
idle in each process
while its main MPI
thread is working

Saturday, April 28, 2012

14

Pinpointing and Quantifying Scalability Bottlenecks

=−

P Q

Saturday, April 28, 2012

400K

14

Pinpointing and Quantifying Scalability Bottlenecks

=−

P Q

Saturday, April 28, 2012

400K600K

14

Pinpointing and Quantifying Scalability Bottlenecks

=−

P Q

Saturday, April 28, 2012

200K

400K600K

14

Pinpointing and Quantifying Scalability Bottlenecks

=−

P Q

Saturday, April 28, 2012

200K

400K600K

14

Pinpointing and Quantifying Scalability Bottlenecks

=−

P Q

P ×

coefficients for analysis
of strong scaling

 Q ×

Saturday, April 28, 2012

